
CS352 Lecture -The Relational Model; Relational Algebra

last revised December 1, 2022
Objectives:

1. To briefly introduce the entity-relationship model
2. To introduce fundamental concepts of the relational model, including

terminology, keys, nulls, views
3. To introduce the relational algebra

Materials:

1. Projectable of an ER diagram example drawn two ways
2. Projectable of figure 2.9 from book
3. On Canvas example of library example database used in class (scheme and

instance)
4. File of projectables containing:

a. ER diagrams for library database (two kinds)
b. Example schema diagram from textbook
c. Schema diagram for library database
d. Sample database contents for library database
e. Natural language query processing
f. Query language classification

5. "Cut and Paste" RA symbols posted on Canvas
6. Note-taking handout for example RA queries
7. Projectable of RA queries against example database

I. Introduction

A. We have seen that a database management system typically describes a
database at three levels of description.

1. The physical level - how the data is stored in files

2. The conceptual level - the “big picture”

3. The view level - individual views of the database for each application

1

B. In order to be able to describe a database, we need some system of notation
and representation - a data model. This is true at all levels; but, we are
particularly concerned with description at the conceptual and view levels.
We must describe two things:

1. Data objects

2. Relationships between data objects

C. We noted last time that, historically, there have been five major types of data
model - all of which are represented by DBMS's in use today, though two are
mostly in legacy systems:

1. The hierarchical model (largely obsolete, but still used in some legacy
systems -we will not look at)

2. The network model (largely obsolete, but still used in some legacy
systems -we will not look at)

3. The relational model (the dominant model, and the focus of much of the
course). Introduced in CPS211; will be where we spend most of our time
in this course. We will begin talking about it today.

4. Various object-oriented and object-relational models (we will look at
briefly in this course)

5. Various semi-structured models used in situations where performance is
critical (we will look at briefly in this course)

D. There is another model, called the entity-relationship model, which is is not,
per se, a basis for commercial products; but it is a very useful tool for
DESIGNING databases. The ER model utilizes a diagrammatic notation,
known as an ER diagram.

2

1. We will spend more time on it later in the course, but we will introduce it
now to facilitate our discussion of the relational model.

2. Here is an example, using one of several different notations that are used
for ER diagrams:

Can also be drawn this way:

PROJECT

3. An ER diagram incorporates the following elements:

a) Entity - an entity is an object that we wish to represent information about.

Example in the above: Borrower, Book, Author

3

Borrower

name
address

Book

callno
title

Author

name

due

Checked
Out

Wrote

b) Relationship - a relationship is some connection between two or more
entities:

Examples: In the above, the “Checked Out” relationship between a borrower
and a book; the “Wrote” relationship between a book and its authors.

c) Attribute - Individual facts that we store concerning an entity or
relationship.

(1)Example: In the above, we record for a Book entity its call number
and title. (In practice, we'd record a lot more as well)

(2)Example: Relationships do not always have attributes, but
sometimes they do. CheckedOut has a DateDue attribute, while
Wrote has no attributes.

4. Note two ways of drawing. (There are actually more we will talk
about later!)

5. While all the data models represent entities in roughly the same way - as
a sequence of records in a file - each representing one entity - one of the
key distinctions between the various models is how they represent
relationships.

II. The Relational Model

A. The Relational Data Model is the predominant data models used for commercial
DBMS's. Although it was first proposed in the 1970's, it has been the subject of
intensive research that continues to today, and has become the dominant model
in actual use. It will, therefore, be the major focus of this course.

B. One of the major advantages of the relational model is that it has a solid
mathematical foundation. The relational model is based on the mathematical
theory of relations. As a result, a large body of mathematical tools is
available to support work with this model.

4

C. The Relational Model represents both entities and relationships the same
way, via tables.

1. This means that the relational model draws no distinction between entities
and relationships; both are simply tables as far as the relational model is
concerned, and are processed in exactly the same way.

2. However, a distinction between entities and relationships can be useful in
the process of designing a database scheme. Thus, one can use the
entity-relationship model as a design tool, with the relational model
serving as a means of implementation. The conversion from design to
implementation is straight-forward since both entities and relationships
can easily be represented by tables. (We will look at this more formally
when we talk about database design.)

3. One important requirement in the relational model is that the relational
model requires that attributes (table columns) be atomic and single-
valued.

a) The former requirement can be easily met by allocating one table
column to each component of a composite attribute.

Example: A person’s address is not atomic. In the US, we normally
consider it to consist of a street address, city, state, and ZIP code.
Therefore, in setting up a relation scheme for a person, we will
generally have separate attributes for each. (Sometimes even two
attributes for street address, separating it into the street address proper
and an apartment number or the like.)

b) The latter requirement may necessitate creating a separate table to
store the different values of a multivalued attribute - we will discuss
this further when we discuss multivalued dependencies in connection
with database design.

5

Example: Many people have more than one phone number. In a
relational database, we would need to use a table to store phone
numbers, rather than having a phone number attribute that stores an
array of values.

(1)Historically, the need to do this - which led to searching multiple
tables - had performance implications which led to the earlier
models persisting.

(2)A lot of work has gone into indexing strategies to produce major
improvements in the performance of relational systems, to the point
where they now dominate the database world.

(3)While modern relational database systems generally give very
good performance, for extremely large datasets efficiency
considerations have led to the rise of some non-relational models
we will look at near the end of the course.

D. We looked at relational databases briefly in CPS221. Some of what we look
at here will be review of concepts we saw then (just in case someone might
have forgotten something - which would never happen, of course :-) but
much of what we will discuss here will be new.

III.Basic Terminology

A. Because the relational model is grounded in the mathematical theory of relations,
writers often use mathematical terms when discussing the relational model.
However, since mathematical terminology can be intimidating to some, there is an
alternate, non-mathematical set of terms that can also be used.

B. Terminology drawn from mathematical relations

1. A relational database is a collection of relations.

2. Formally, a relation is a set of ordered tuples of some arity.

6

a. Note that the term tuple is not as unfamiliar as it sounds. For example, if a
woman gives birth to two children, we say she has had twins; but if she has
five, we say she has had quintuplets; if six, sextuplets etc.

b. The arity of a tuple is the number of components in it - e.g.
(aardvark, anthony) is a tuple of arity 2

c. Within any given relation, all the tuples have the same arity.

d. When we say that the tuples are ordered, we mean that the order of listing
the components is important - e.g.

(aardvark, anthony) is not the same tuple as (anthony, aardvark)

e. Since a relation is a set, the order of the tuples themselves is immaterial -
e.g. the following are the same relation

(aardvark, anthony)
(elephant, emily)

and

(elephant, emily)
(aardvark, anthony)

3. The components of a tuple are generally called attributes. Mathematically,
each attribute of a tuple is given a number - e.g. in (aardvark, anthony),
aardvark is attribute 1 and anthony is attribute 2. (Note that, by convention,
1-origin indexing is used.) However, in relational databases, we normally
give the attributes names (perhaps last_name and first_name, in this case.)

4. Further, each attribute of a tuple is drawn from a specific domain, or set
of possible values.

Example: the last_name attribute above is drawn from the set of all
possible last names.

7

a. In many cases, actual relational DBMS software only allows the
domain to be specified in terms of a basic data type - e.g. “integer” or
“string of 30 characters”.

b. Some systems do, however, allow the enforcement of domain
constraints beyond basic data type.

In such a system, proper specification of domains could prevent
semantic errors, such as mistakenly storing a ZIP+4 ZIP code (9 digits)
into a social security number field!

5. The specification of the structure of tuples in a relation is called a relation
scheme.

Example: suppose we had a relation in which the first attribute of each
tuple was drawn from the set of ASCII characters and the second from the
set of integers. (Perhaps this relation comprises an ASCII code table.)
We could describe the relation scheme for this relation as follows:

ASCII_code_table_scheme = (character: char, code: integer)

(Note the analogy to a type in a programming language.)

A specific relation on some scheme is called a relation instance or an
instance of that scheme

(Note the analogy to the value of a variable in a programming language)

6. A relation instance on some scheme is, in fact, a subset of the cartesian product
of the domains of its attributes. (It can be any subset, including an improper
subset or the empty subset)

Example: Suppose we had a relation on the following scheme:
(One_digit_integer: 0..9, flag: boolean)

The domain of the first attribute would be { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

 and that of the second would be { false, true }

8

The Cartesian product of these domains is:

0 false
1 false
2 false
3 false
4 false
...
8 true
9 true

Any relation on this scheme would be a subset of this cartesian product. E.g.
the table which indicates whether a given integer is odd would be the subset:

0 false
1 true
2 false
3 true
4 false
...
8 false
9 true

C. Alternate (non-mathematical) terminology

1. We may also speak of a relational database as a collection of tables. (A
table, then is another name for a relation.)

2. Each table, in turn, consists of some number of rows and columns. (A row, then,
is another name for a tuple; and a column is another name for an attribute.)

The relation-scheme is often represented as headings on the columns - e.g.

last_name first_name

aardvark anthony
cat charlene

9

D. Keys

1. Because a relation is a set, the tuples comprising it must be distinct (no
two can be identical)

a. A superkey for a relation is a set of attributes which serve to
distinguish any tuple in the relation from all others - i.e. each tuple in
the relation will have a different set of values for superkey attributes
than any other tuple in the relation.

A superkey may be a single attribute, or it may be composite (two or
more attributes). (if the superkey is composite, some attributes may
have the same value in different tuples as long as at least one differs so
that the exact same combination does not appear more than once.).

Because a relation is a set, all of the attributes, together, will
necessarily be a superkey.

b. A candidate key is a superkey which has no proper subset that is also
a superkey.

c. A primary key is one particular candidate key chosen by the designer
to serve as the basis for identifying tuples.

2. An essential characteristic of a database design is that every relation has
a primary key (though perhaps this primary key will, in fact, be all of the
attributes together.)

3. Another important notion in relational database design is the notion of a
foreign key. When a column or group of columns in one table is the
primary key of some other table, we call this a foreign key (the key of
some other table is present in this table.) Foreign keys are, of course, the
way we represent relationships in relational tables.

4. It is also possible to require a reference to attributes that are not the
primary key - though this is less common.

10

E. Nulls

1. One interesting question that arises in database design is how are we to handle a
situation where we don't have values available for all the attributes of an entity.

Example: Suppose we need to add a person to a scheme that includes the phone
number, but for some reason we don't know the person's phone number.

2. For cases like this, relational DBMS's provide a special value called NULL that
can be stored in a field. When we print out the field, NULL will normally print
as spaces; but storing NULL in a field is NOT the same as storing a string of
spaces (i.e. the DBMS software distinguishes between NULL and " ").

F. The scheme for a relational database can be represented in diagrammatic form by a
schema diagram

PROJECT Figure 2.9 from book, Note the explicit representation for foreign keys

11

IV.Query Languages

A. For the rest of this series of lectures, we will make use of the following very
simple example database for a small library. (This is similar to the one we
used in CPS221, but has two more tables and allows illustrating several more
operations.)

The structure of this database has been contrived to allow us to illustrate
most kinds of query operations we might want to perform. (Relations have
been kept unrealistically small, both in terms of the number of rows and in
terms of the number of columns).

Schema diagram: PROJECT

12

Example instance: (Note: primary key attributes are underlined)

borrower(borrower_id, last_name, first_name)  

12345 aardvark anthony  
20147 cat charlene  
89754 dog donna  
60984 fox frederick  
54872 zebra zelda  

book(call_number, title, author)  
 

QA76.093 Wenham Zoo Guide elephant  
RZ12.905 Fire Hydrants I Have Known dog  
LM925.04 21 Ways to Cook a Cat dog  
AB123.40 Karate koala  

checked_out(borrower_id, call_number, date_due)  

89754 RZ12.905 11-10-02  
89754 LM925.04 11-10-02  
20147 AB123.40 11-15-02  

reserve_book(call_number, course_id)  

QA76.093 BY123  
AB123.40 PE075  

employee(ssn, last_name,first_name, salary, supervisor_ssn)  

123-45-6789 aardvark anthony $40000 null  
567-89-1234 buffalo boris $30000 123-45-6789  
890-12-3456 elephant emily $50000 123-45-6789  
111-11-1111 fox frederick $45000 567-89-1234  

PROJECT - SHOWING CONTENT AND SCHEME AND REFERENCE
COPY ON CANVAS

B. One of the main reasons for having a database is to be able to answer
queries, such as the following that might be posed against our example.
(Some of these are ones used in CPS221, but others involve more advanced
features than those discussed there)

13

1. Who is the borrower whose borrower id is 12345?
2. List the names of all borrowers
3. What is the title of the book whose call number is QA76.093?
4. List the titles of all books that are currently checked out.
5. List the names of all borrowers having one or more books overdue.
6. List the titles of all books, together with the borrower id of the person (if

any) who has the book out.
7. List the names of employees together with their supervisor’s name.
8. List the names of all employees who earn more than their supervisor.
9. List the names of all people connected with the library - whether

borrowers, employees, or both.
10.List the names of all borrowers who are not employees.
11.List all books needed as course reserves that are currently checked out to

someone.
12.List the call numbers of all overdue books, together with the number of

days they are overdue.

(When we get to SQL we will look at some other examples)

Queries such as these are termed natural language queries. Of course,
most commercial DBMS's cannot accept queries like this, though natural
language query capability is an area of work in AI. Instead, most DBMS's
use a more formal query language. Even those with natural language
capabilities typically consist of a regular query language plus a natural
language front end - e.g.

PROJECT

"Front end"
Software

DBMS
Software

Actual DBMS
Query Language
Equivalent

Natural
Language
Query

14

C. Actual queries against a database are expressed in a query language, which is
of one of two kinds:

1. A formal query languages - using mathematical notation - is used for
theoretical work. Typically, a query written in a formal query language is
not readily understandable to a typical user.

2. A commercial query language is a query language used by actual DBMS's.

3. Though commercial languages are what is used in actual DBMS
applications, formal languages are worthy of some study:

a. All commercial languages build on underlying formal language
concepts.

b. Formal languages provide a vehicle for research (especially the
proving of various theorems) that generates results useful in the
development of commercial languages.

D. Both formal and commercial query languages are of two general types:
procedural and non-procedural. (The 7th ed of the book uses different
terminology - functional and declarative - but the idea is the same and I will
stick with the older terms for clarity)

1. A procedural language requires the user to spell out the series of steps
needed to satisfy his query.

2. A non-procedural language allows the user to simply specify what he/she
wants, with the DBMS figuring out the steps needed to get it.

Example (from a different realm): Suppose one wanted to find the roots
of the following equation:

x2 + 3x + 2 = 0

15

a) In a non-procedural language, one would simply specify the equation
and indicate in some way that an appropriate value of x is wanted.
(“Find the value of x such that x2 + 3x + 2 = 0)

b) In a procedural language, one would specify steps like:

Compute discriminant = 32 - 4 * 1 * 2

Compute root1 = (-3 + sqrt(discriminant)) / 2

Compute root2 = (-3 - sqrt(discriminant)) / 2

Note that our sample English queries were all of a non-procedural sort.
A major part of the challenge in developing a natural language front-
end for a DBMS is the process of converting a non-procedural query
to a correct series of procedural steps if the actual DBMS query
language is procedural.

E. In our study of relational databases, we will look at four query languages
- one of each possible combination:

PROJECT

1. We will look at relational algebra today, and SQL as the next major topic
in the course.

2. We will look much more briefly at relational calculus and QBE later in
the course.

Formal Commercial

Procedural Relational Algebra SQL

Non-procedural Relational Calculus QBE

16

IV.Query Operations in the Relational Algebra

Queries in the relational algebra are formulated in terms of six basic operations on
relations. Three operate on a single relation to give a new relation; and three
operate on pairs of relations to give a new relation.

Relational algebra uses symbols for expressing these basic operations. When this
course was offered previously, students often wrote RA expressions by hand when
doing homework - but since homework is now being submitted online, it will
need to be word-processed. I have placed on Canvas with cut and paste versions
of these symbols. You can use these when word-processing homework.

Show "Cut and Paste" handout on Canvas

Distribute note-taking outline for queries
.
A. The operation of SELECTION (denoted by the Greek letter sigma - σ)

selects rows of a table that meet certain criteria. The result is a new table
with (generally) fewer rows than the original table, but with the same
columns.

Example: What is the relational algebra expression corresponding to our first
English query: "Who is the borrower whose id is 12345?"?

ASK

σ borrower
 borrower_id = 12345

What is the result of this query?

ASK

12345 aardvark anthony

Note, then, that selection reduces the table by squeezing out rows that do not
satisfy the selection condition.

PROJECT RA VERSION AND RESULTS OF THIS AND SUBSEQUENT
OPERATIONS

17

B. The operation of PROJECTION (denoted by the uppercase Greek letter pi - ∏)
chooses only specific columns from all the rows of a table

Example: What is the relational algebra expression corresponding to our second
query: "List the names of all borrowers"?

ASK

∏ borrower
 last_name
 first_name

What is the result of this query?

ASK

aardvark anthony
cat charlene
dog donna
fox frederick
zebra zelda

Example: our third query ("What is the title of the book whose call number is
QA76.093?") could be satisfied by a selection from book to get the row for the
book in question, followed by a projection on the book-title attribute. (I.e.
composing two relational algebra operations) - written as

∏ σ book
 title call_number = QA76.093

What is the result of this query?

ASK

Wenham Zoo Guide

Note, then, that projection reduces the table by squeezing out unwanted columns.

1. One possible problem with a projection operation is that it could produce
a result with duplicate rows, by projecting out the attribute that
distinguishes them.

18

Example: Project book on the author attribute. We now have two books
with the same author.

This is a problem. Why? ASK

A relation is a set, and a set cannot have the same element appear twice.
Thus definition of projection specifies that the result of a projection has
any such duplications eliminated. That is, the projection operation can
also result in squeezing rows out of the result.

2. However, the SQL language (which is based on relational algebra) does
not do this automatically, because of the time involved - though there is a
SQL query language feature to specify that duplicates are to be
eliminated.

D. The operation CARTESIAN PRODUCT or a special form of it called JOIN is
used when a query involves information contained in more than one table.

Example: Our next two queries would require a join.

“List the titles of all books that are currently checked out” requires
information from the checked_out table (to find out the call number(s) of
book(s) currently checked out) and from the book table (to get the titles)

“List the names of all borrowers having one or more books overdue” requires
information from the checked_out table (to find out the ids of borrowers
having books overdue) and from the borrower table (to get their names)

1. There are several variants of this operation.

2. The cartesian product - denoted by X - generates all possible pairings of
the rows from the two tables.

Example: we could use a cartesian product as part of the performing the
for the query "list the titles of all books that are currently checked out":

19

checked_out X book

a. This produces large result

borrower call date-due call title author  
id number number  
 
89754 RZ12.905 11-10-02 QA76.093 Wenham Zoo Guide elephant  
89754 RZ12.905 11-10-02 RZ12.905 Fire Hydrants ... dog  
89754 RZ12.905 11-10-02 LM925.04 21 Ways to Cook .. dog  
89754 RZ12.905 11-10-02 AB123.40 Karate koala  
89754 LM925.04 11-10-02 QA76.093 Wenham Zoo Guide elephant  
89754 LM925.04 11-10-02 RZ12.905 Fire Hydrants ... dog  
89754 LM925.04 11-10-02 LM925.04 21 Ways to Cook .. dog  
89754 LM925.04 11-10-02 AB123.40 Karate koala  
20147 AB123.40 11-15-02 QA76.093 Wenham Zoo Guide elephant  
20147 AB123.40 11-15-02 RZ12.905 Fire Hydrants ... dog  
20147 AB123.40 11-15-02 LM925.04 21 Ways to Cook .. dog  
20147 AB123.40 11-15-02 AB123.40 Karate koala  
 

PROJECT

i. Because the checked_out table contains 3 rows, and the book table
4 rows, the result of the join contains 3 x 4 = 12 rows.

ii. Because the checked_out table has three columns and the book
table has three columns, the result of the join has 3 + 3 = 6
columns.

This will always be true for a cartesian product: the result has as
many rows as the product of the numbers of rows of the two tables,
and as many columns as the sum of the numbers of columns of the
two tables. (For the former reason, simple join is sometimes called
product or times.)

Question: For the second query - requiring a cartesian product of
checked_out and borrower) how many rows would the result table
have? How many columns?

ASK

3 x 5 = 15 rows
3 + 3 = 6 columns

20

b. However this result is not really useful, Instead, when we combine
two tables generally only certain rows are meaningful.

Example: in the above, the call number appears twice - once from each
table - but only the rows in which the two values of call number are
the same tell us anything worth knowing - i.e. the fact that book
RZ12.905 is checked out means that the title of RZ12.905 is of
interest. On the other hand, the row that pairs RZ12.905 with
QA76.093 means nothing. Thus, the cartesian product must almost
always be immediately followed by a select.

1. One way to do this is to do a select after the join - e.g.

∏ σ checked_out Χ book  
 title checked_out.call_number =  
 book.call_number checked_out

2. Since relational algebra is a procedural language, this implies that
we do the cartesian product first and then go through every row of
the result keeping only those that satisfy the condition.

3. A much more efficient way to do this would be the examine each
row of the cartesian product when it is generated and only keep
rows that satisfy the condition, discarding the rest.

This yields an operation called JOIN , which has the following
symbol (where the theta stands for the selection condition)

|Χ|θ

Often the join condition specified by the theta will be requiring
equality of values for some columns between the two tables - as is
the case here. Such a join is sometimes called an equijoin, And
sometimes a join in which the join condition is something other
than a match of values is called a theta join.

21

c. In formulating the condition, of course, one must use attribute names
from both relations in the join. Since there is no rule that each relation
must have unique attribute names (and, in fact, there are good reasons
for having common names between relations), one must often qualify
attribute names by the name of the relation they come from.

If we now project this on title, we get the answer to our query about
title of books checked out:

∏ checked_out |Χ|θ book  
 title checked_out.call_number =  
 book.call_number  

(Note that we do not need to qualify the title attribute, since it appears
in only one relation.)

What is the result of this query?

ASK

Fire Hydrants I Have Known
21 Ways to Cook a Cat
Karate

d. In similar fashion, our fifth query (“List the names of all borrowers
having one or more books overdue.”) can be answered by using a join
with project as above, but with an additional join conditions (or, less
efficiently, a select after the fact)

∏ checked_out |Χ|θ borrower  
 last_name, checked_out.borrower_id =  
 first_name borrower.borrower_id ^  
 date_due < today 

4. When our join is an equijoin based on columns having the same name (as
was true in this case), we typically don't want the common value to
appear twice. Relational algebra defines s special variant of the join for it

22

called the NATURAL JOIN (denoted by the the join symbol with bars on
each side but without an explicit join condition. |X|) .

a. Example: the query "list the titles of all books that are currently checked
out" could be done using a natural join as follows:

∏ (checked_out |X| book)
 title

This eliminates the need for explicitly specifying the join condition,
though projection is still needed to eliminate columns other than the title.

b. However, the query “List the names of all borrowers having one or
more books overdue”, if done with a natural join, also requires a
selection following the natural join to select only the rows for overdue
books.

c. The natural join is defined to require equality of values in the columns in the
two joined tables having the same name and the definition also specifies that
only one copy of the common column(s) is included in the result.

d. It could be realized by using a join combined with projection (or
cartesian join plus both selection and projection.) However, if the
natural joint is available it is simpler to use because one need not
explicitly specify the join conditions.

e. Note that natural join is defined in terms of attribute names. This
presupposes that when columns in two different tables have the same name,
they refer to the same thing. If the different names mean different things, the
result could be undesirable - e.g. suppose our employee table included a
“title” attribute which was the employee’s job title - then

book |X| employee

would give a table listing employees whose job title is the same as the title of
some book! (The possibility that something like this might happen
accidentally when a column is added to a table is a reason why some experts

23

discourage use of natural join and some systems (e.g. the one we will use,
IBM Db2) do not support it.)

5. Another variant of join is the OUTER JOIN, which can either be a variant
of any equijoin. (We will use the natural join for example here - but
remember it can also be used with any type of equijoin.)

a. An ordinary natural join operation will omit from the result any row
from either table that does not join with some row from the other table.

Example:

List the titles of all books, together with the borrower id of the person
(if any) who has the book out. As a first attempt, we could use the
following approach:

∏ book |X| checked_out
 title
 borrower_id

What is the result of this query?

ASK

\Fire Hydrants I Have Known 89754  
21 Ways to Cook a Cat 89754  
Karate 20147

b. Note that there is no row in this table for Wenham Zoo Guide. Why?

ASK

Wenham Zoo Guide is not checked out, so there is no row in the
checked_out table for the row in book to join with.

c. If we want to be sure all books are included, even if not checked out,
we can use an outer join:

∏ book ⊐Χ| checked_out  
 title  
 borrower_id  

24

which will pair any tuple in book that does not join with any row in
checked_out with a “manufactured” row of all nulls

d. The outer join comes in three versions

i. The left outer join - denoted ⊐Χ|θ or ⊐Χ| - which we used above - joins
any tuple in the left relation that does not join with anything in the right
relation with a dummy tuple of all nulls. Any tuple in the right relation
that does not match a tuple in the left is absent from the result.

ii. The right outer join - denoted |Χθ⊏ or |Χ⊏ - joins any tuple in the
right relation that does not join with anything in the left relation
with a dummy tuple of all nulls. Any tuple in the left relation that
does not match a tuple in the right is absent from the result.

iii.The full outer join - denoted ⊐Χθ⊏ or ⊐Χ⊏ combines the above -
hence no tuple from either table is omitted.

E. The operation RENAME takes a given table and gives it a new name,
possibly also renaming its attributes as well. Rename is denoted by the
Greek letter rho - ρ.

1. This operation is often used in doing a join between a table and itself.

2. Example: Our query "List the names of employees together with their
supervisor’s name" requires joining the employee table with itself on the
condition that the employee's supervisor_ssn matches the supervisor's ssn."

This requires giving the table a second name so that we can refer to it under
two names, as follows:

∏ employee|Χ|θ (ρ employee)  
 employee.last_name employee. supervisor  
 employee.first_name supervisor_ssn =  

25

 supervisor.last_name supervisor.ssn  
 supervisor.first_name  

a. The rename operation here causes the second copy of employee to be
called supervisor for the purposes of qualifying names in the select and
project.

b.However, this fails to produce a row for anthony aardvark.

ASK WHY? (Hint - look closely at the employee table)

anthony aardvark has no supervisor!

c. How would we fix this?

ASK

Use a left outer join

∏ employee ⊐Χ|θ (ρ employee)  
 employee.last_name employee. supervisor  
 employee.first_name supervisor_ssn =  
 supervisor.last_name supervisor.ssn  
 supervisor.first_name

3. Another example: “List the names of all employees who earn more than their
supervisor”. We can do this by

∏ σ (ρ employee |Χ|θ ρ employee)  
 e.last_name e.salary> e e.supervisor_ssn = s  
 e.first_name s.salary s.ssn  
 
 
 
 

26

or folding the salary comparison into the join condition (and also renaming both
tables)

∏ (ρ employee |Χ|θ ρ employee)  
 e.last_name e e.supervisor_ssn = s  
 e.first_name s.ssn ^  
 e.salary > s.salary 

What is the result of this query?

ASK

elephant emily
fox frederick

4. Actually, as the example above suggests, when we need to qualify column
names, it is often convenient to rename the tables in a join to simplify the
names involved in the selection clause and other operations

5. The rename operation can also be used to rename the columns of a table -
we will see an example of this shortly

F. The operation UNION takes two relations on the same scheme and combines
them into one, eliminating duplicate tuples.

1. Example: Our query “List the names of all people connected with the
library - whether borrowers, employees, or both.” requires combining
information from the borrower table and the employee table. A join is not
what we want - in no sense would pairing a borrower and an employee
make sense - we want to know the names of people who are either or
both. We need a union in this case.

2. One requirement for the union is that the schemes of the two tables be the same
- that is, the same number and domains of the columns. Borrowers don't have
a salary or a supervisor, and borrower_ids and ssns - though serving similar
roles, are actually drawn from separate domains. We therefore use projection to
project out all but the thing the two tables have in common: last and first names

27

(∏ borrower) ! (∏ employee)
 last_name, last_name,
 first_name first_name

3. The symbol is the familiar set algebra symbol for union: !

4. Because relations are sets, duplicate rows that would result from a union
are discarded - e.g., in the above, suppose an someone were both a
borrower and an employee - then their name would appear only once,
even though it is in both tables. (Though for efficiency reason, many
relational DBMS’s allow you to avoid this operation and accept
duplicates, since discarding duplicates takes additional processing.)

Example: in the above, there is only one row for aardvark and fox

5. Sometimes, we may have a case where tables being combined by union have
similar attributes with different names. In this case, we may need to rename
individual attributes.

Example: Suppose we wanted our list to include an “id” attribute in both cases -
choosing either the borrower_id or the ssn as appropriate. This could be done
by:

(ρ ∏ borrower) ∪ (ρ ∏ employee)  
 t1(id, borrower_id t2(id, ssn  
 last_name, last_name last_name last_name  
 first_name) first_name first_name) first_name  
 
(Note that we use ρ to rename the “id” attributes to both be called id in the
result.)

(Note that, in this case, a person who was both a borrower and an employee
(aardvark and fox) definitely appears twice in the result - one with each id!)

G. The operation of DIFFERENCE takes two relations on the same scheme and
returns a relation having only those tuples which appear in the first but the
not second.

28

Example: Consider the query “List the names of all borrowers who are not
employees.” How would this be accomplished?

ASK

(∏ borrower) - (∏ employee)
 last_name, last_name,
 first_name first_name

1. The symbol is the familiar set algebra symbol for difference: -

2. As with union, the difference operation only makes sense if the tables
involved have the same arity, and corresponding attributes come from the
same domain.

H. One other operation is not strictly speaking, not necessary, since it can be
expressed in terms of the six primitives (selection, projection, join, rename,
union, and difference). But it is useful enough to include it as an operation in
its own right anyway.

The operation of INTERSECTION is similar to union and difference, in that
it combines two relations having the scheme. But where union produces all
tuples that occur in either table, and difference gives those tuples in the first
relation but not the second, intersection gives only those tuples that occur in
BOTH tables.

Example: How would we answer the question “List all books needed as
course reserves that are currently checked out to someone”?

ASK

(∏ reserve_book) ∩ (∏ checked_out)
 call_number call_number

(Joining could now be used to get additional information such as the Title of
the book and/or the borrower who has it.)

29

1. The symbol for intersection is the familiar set algebra symbol ∩

2. If intersection is not available in a particular commercial query language,
it can be implemented from the other primitives as follows:

to form the intersection of relations R1 and R2, compute

R1 - (R1 - R2)

a. R1 - R2 computes all tuples in R1 but not in R2

b. therefore R1 - (R1 - R2) leaves only those tuples from R1 which also
occur in R2 - i.e. all tuples occurring in BOTH R1 and R2.

3. As with union and difference, intersection only makes sense if both tables
have the same arity and corresponding attributes come from the same
domains. (Note how we used projection in the example to facilitate this.)

I. An additional operations that extends the basic relational algebra, is
generalized projection - allow a projection expression to contain
computations based on column values, not just column values themselves.

Example:

List the call numbers of all overdue books, together with the number of days
they are overdue.

ASK

∏ σ checked_out  
 call_number date_due < today  
 today - date_due  

30

J. How do the various operations handle the special value NULL?

 A key property of NULL is that it is never treated as any value during a
query - the principle being that, since NULL means we don't know a value, it
should never participate in any query. Thus, if we compare an attribute
whose value is NULL to some value, the result of the comparison is always
false, regardless of which comparison (=, <., >., <>, >= or <=) we use. In
fact, it is even the case that NULL = NULL is false, and so is NULL <>
NULL. Further, a NULL value never participates in any aggregate
operations such as average.

1. Example: suppose we are doing a natural join between two relations
which each contain a phone-number attribute. If a tuple in the first
relation contains a NULL phone-number, it will not join with any tuple
in the second relation - even one that also has a NULL phone-number.
(Since NULL = NULL is false!)

2. Example: suppose we are calculating the average salary for all
employees in a company. If the salary for some employee is stored as
NULL, then - for the purposes of taking the average - it will be as if that
employee were not present. (Notice that this gives a different result than
if we took the salary to be 0.)

3. In designing a database, it will sometimes be necessary to specify that
certain fields CANNOT ever contain a NULL value. This will certainly
be true of any field that is part of the primary key, and may be true of
other fields as well. Most DBMS's allow the designer to specify that a
given field cannot be NULL
.

31

